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The stationary probability density of Fokker-Planck models with weak noise r/ 
is asymptotically of the form exp[ 1/t/cp(q)]. If q) is smooth, it satisfies a 
Hamilton-Jacobi equation at zero energy and can be interpreted as the action 
of an associated Hamiltonian system. Under this assumption, q~ has the proper- 
ties of a Liapounov function, and can be used, e.g., as a thermodynamic poten- 
tial in nonequilibrium steady states. We consider systems having several attrac- 
tors and show, by applying Melnikov's method to the associated Hamiltonian, 
that in general (p is not differentiable. A small perturbation of a model with dif- 
ferentiable q) leads to a nondifferentiable (p. The method is illustrated on a 
model used in the treatment of the unstable mode in a laser. 
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1. I N T R O D U C T I O N  

The Fokker-Planck equation is a widely applicable model for the descrip- 
tion of macroscopic fluctuating systems. ~ 3) The study of the small-noise 
limit of these models is useful in many contexts, such as in the stability 
analysis of dynamical systems, (4'5~ in the construction of invariant measures 
for strange attractors, ~6~ and to obtain a good approximation for weakly 
fluctuating systems. ~ 

We are interested in the stationary probability density P(q, q) which is 
a solution of the stationary Fokker-Planck equation 

c3 1 0 2 ~ Oq--- ~ {[K*'(q)+~lP(q)] P} + ' ~ ~  [-t/Q~V(q)P] = 0  (1.1) 
~t,v 
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K" is the drift, 7I u the noise-induced drift (which is irrelevant in the weak- 
noise limit), and Q~V the diffusion tensor (symmetric, positive). The 
parameter q measures the strength of the noise. P can always be written as 

P( q, 7 ) = e-O(q'") (1.2) 

It has been shown ~4~ that under quite general conditions, for 7 ~ 0 ,  ~b is 
asymptotically of the form 

1 
~(q, q) = ~  ~o(q)+ 0(7  o) (1.3) 

The pseudopotential ~o(q) is defined variationally by minimalization of 
an action functional S within the set of absolutely continuous functions (4~ 
~(t): 

S(~; q, qo, T1, T2)= dt ~ Q ; l [ 4 U - K U ( ( ] ) ] [ ~ v - I ~ ( ~ ) ]  (1.4) 
1 k~,V 

If K ~ has a single attractor A, ~p is given by 

(p(q) = min [S(O(t); q, qo)] + c (1.5) 
~( T I ) - - q o ~  A 

~ ( T 2 ) - -  q 

where qo lies on the attractor, T,, T 2 are free, and c is a constant. In the 
case of several stationary points Ai, cp is obtained by calculating for each A, 

~a~(q) = rain [S(O(t); q, q0i)] + c~ (1.6) 
0( TI ) -- qoi e Ai  

el(T2)  = q 

and then taking the minimum over the Ar 

~o(q) = rain qS,(q) + c' (1.7) 
i 

The weighting constants c i are determined by methods of Markov chains./4~ 
This construction shows that there is no a priori reason to expect ~o(q) to 
be differentiable. In fact we will see that in general it is not the case/8 11) 
Consider the situation in which for some values of q the minimum in 
Eq. (1.7) lies on one of the @, while in a neighboring region it lies on 
another branch qSj. At the points where the minimum changes from one 
branch q5 i to another ~bj one can expect a discontinuity in the derivative of 
q). However, q) cannot be arbitrarily irregular either; it can be shown (4~ that 
q) satisfies a local Lipschitz condition which implies almost everywhere 
differentiability.(12"13) 
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q~(q) is usually denoted as a "potential," since in the cases where it is 
differentiable it has the properties of a Liapounov function, and can be 
used as a thermodynamical potential, e.g., in nonequilibrium steady states. 

If q~ is differentiable (C2), it satisfies an equation of the Hamilton- 
Jacobi (HJ) type at zero energy [obtained by insertion of (1.3) into (1.1) 
and letting ~/--+ 0 ]: 

1 3(o O~o ~0~o K ~ 
H(q'(?q~ 7 - -  = 0  ~,,~ Oq ~ 

(1.8) 

with (~?/3q)q)= 0 on the critical points of K'.  Under this C 2 assumption, 
there is a correspondence between the weak-noise asymptotics of the 
stochastic mode! and an associated Hamiltonian system: the potential ~o is 
the action of the Hamiltonian at zero energy. This equation has been con- 
sidered as the natural toot to calculate the weak-noise potential. However, 
when one tried to compute numerically the solution of (1.8) for nontrivial 
problems (e.g., with more than one attractor) one found often very 
pathological behaviour, (8-H) showing wild oscillations that had no 
reasonable physical interpretation. Graham and TU (8'9) found an 
explanation by noticing that a smooth ~0 corresponds to smooth 
separatrices in the associated Hamiltonian system. This is a very unstable 
nongeneric property: a smooth separatrix joining two critical points of a 
Hamiltonian is simultaneously the unstable manifold of one point and the 
stable manifold of the other point. This degenerate coincidence is broken 
by any general small perturbation; one finds then the generic situation of 
homoclinic intersections of the two manifolds, and the consequent 
appearence of wild oscillations. (14 16) Translating back to the stochastic 
problem we get the following picture: Each of the ~bi in (1.6) is constructed 
piecewise from the characteristics of the HJ equation (1.8) originating at 
the corresponding stationary point. (41 The degenerate smooth separatrix 
corresponds to the situation where the different pieces ~bi coincide and form 
a single smooth function. The generic case is when the different @ intersect 
at nonzero angles and the separatrices have wild oscillations, which imply 
intersections of the characteristics. There are two kinds of nondifferentiable 
points: The first kind is due to the intersection of the characteristics and 
they are already present in the @. The second kind appears by taking the 
minimum in Eq. (1.7). Thus the oscillations found in the numerical 
solutions of the HJ equation (1.8) are an artifact. They are features of the 
associated Hamiltonian system, but they are not present in the weak-noise 
limit of the stochastic model; they are eliminated when ones takes the 
minimum in Eqs. (1.6), (1.7). The correspondence between the stochastic 
and the Hamiltonian systems is valid only when the potential ~0 is differen- 
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tiable. Otherwise, the Hamiltonian (1.8) is only an auxiliary tool, useful for 
the computation of the (hi. (~~ We remark that it is also possible to have 
models with a single attractor where the HJ equation does not have a 
unique global solution (due to intersections of the characteristics), in which 
case (p is also not differentiable. (4) We do not consider this case here. 

V. K. Melnikov developed a method (15 17~ which gives a sufficient con- 
dition for the appearence of homoclinic points and oscillating separatrices 
in systems with one degree of freedom subjected to a periodic perturbation. 
The method has been extended (ls-2~ to analyze genera ! perturbations of a 
class of systems with n degrees of freedom, in which one degree of freedom 
has smooth separatrices and the other n -  1 admit action-angle variables. 
In the following we adapt the method to treat the Hamiltonian (1.8) 
associated to the stochastic model and obtain a sufficient criterion for the 
nondifferentiability of the potential q~. We consider Fokker-Planck models 
in two dimensions with radial symmetry and show that a general pertur- 
bation that breaks this symmetry leads to a nondifferentiable potential. 

2. M E L N I K O V ' S  M E T H O D  

We consider as unperturbed system a Fokker-Planck model with 
radial symmetry. In polar coordinates (r, 0) we have a 0-independent drift 
and diagonal diffusion tensor 

K~ = \ K 2 ( r ) ] ,  Q~u = 

The stationary state can be calculated explicitly (2~) 

r dr, 0 )  =  0(r) = L Qo H 
i.e., 

0 ) (2.1) 
Q~2(r) 

r/Qo ~l (2.2) 

Ir K+(r') 
(po(r) = --2 o dr' Qlol(r,) (2.3) 

which is independent of /~0 and Q22. (K~0 only contributes to the drift 
velocity (21) R~ = (0, K~o(r)), which does not affect the stationary state.) The 
unperturbed potential is obviously differentiable (under standard con- 
ditions on Ko ~, Qot~). The associated Hamiltonian is 

Ho(r, Pr, O, PO) = F(r, Pr) + G(r, Po) (2.4) 
with 

F(r, p~) = 1Q~l(r)(pr)e + prK~(r) 
(2.5) 

G(r, Po) = gQol 22(r)(po )2 + poi~oo(r ) 



Melnikov's Criterion for Nondifferentiable Weak-Noise Potentials 577 

where p~, Po are the canonical impulses and correspond to &p/& and c'~qo/00 
in the Hamilton-Jacobi equation. We add a general perturbation ell1 

He = Ho(r, Pr, Po) + eH,(r, p~, O, Po) (2.6) 

which can represent any perturbation of K~ and Q~v. 
We sketch now Melnikov's method adapted to (2.4)-(2.6) following 

essentially Ref. 18, but generalizing it to allow an r dependence in G(r, Po). 
The equations of motion for the unperturbed Hamiltonian system are 

OF 
= - -  (r, Pr) = Q~lPr + K1 (2.7a) 

@r 

0F(r,  p r )=  I 0 0 
/~r- 0r - 2 0-7 Q~l(p~)2 - p r  ~ K~ (2.7b) 

0= 0o 
Opo - (2(r, Po) = Q~2po + I~o (2.8a) 

p0 = 0 (2.8b) 

The first two equations depend only on r and Pr and can be solved 
independently of the other two. Inserting then r(t) into Eq. (2.8a), O(t) can 
be obtained by integration. 

We make the following assumptions on F and G: 

(i) We assume that the system (2.7) contains several critical points 
joined by separatrices [which are smooth since (2.7) is effectively one 
dimensional]. In the analysis one considers separately each separatrix 
joining two critical points (heteroclinic orbit). One only needs to consider 
the system in a neighborhood of each separatrix. 

(ii) We assume that in a neighborhood (in Po) of the considered 
orbits 

D(r, Po) --~Po G(r, Po) r  (2.9) 

which guarantees the (local) existence of G l(r, e), the inverse of G with 
respect to Po. Further, O(t) is a monotone function of t. 

One proceeds in three steps: 

(1) The autonomous system (2.7), (2.8) with two degrees of freedom 
at the fixed energy E = 0 can be reduced to a nonautonomous single degree 
of freedom system, essentially by using energy conservation and letting 0 
take the role of a time. (1.) 
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(2) 
system. 

(3) 

The standard Melnikov method can be applied to the reduced 

The criterion is then translated back to the original variables. 

2.1. Reduct ion 

(a) Since the total energy is conserved, the equation 

H~(r, p~, O, Po) = E (2.10) 

can be used to eliminate Po. The condition (2.9) guarantees for small e the 
invertibility of (2.10) with respect to Po in any compact  subset where 
Y2(r, Po) r 0: 

po= L~(r, p~, O, E) (2.11 

L ~ can be developed in powers of e: 

L ~ = Lo(r, pr, E) + eL~(r, p,, O, E) + 0(~ 2) (2.12) 

with 

Lo=G- l ( r ,  E -  F(r, Pr)) (2.13 

- H i ( r ,  Pr, O, L~ Pr, E)) 
LI -- ~62(r, L~ Pr, E)) (2.14) 

(b) For small e, O(t) is monotone [-from condition (2.9)] and can be 
inverted t = t(O). The equations for r and p,. become 

dr_ dr/ _0"T0"  
-~ d t /d t  Opr/OPo 

dpr dp~/dO 8H ~ /SH ~ 

do - Z / Z  Or/Opo 

(2.15) 

From implicit differentiation of (2.10) we get the identities 

OH ~ c3H ~ 8L ~ 
t- - - = 0  

8r 8p0 8r 

8H ~ 8H ~ 8L ~ 
k - - = 0  

Mr Opo @r 

(2.16) 
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which substituted into (2.15) implies 

dr 3L ~ 

dO C3p r 

dp, ~L ~ 

dO Or 

(2.17) 

Thus 0 takes the role of a time, and - L  ~ the role of a Hamiltonian, with 
an autonomous part - L o  and a periodic time-dependent perturbation 
-eL~ + O(e2). For e = 0 Eqs. (2.17) reduce to the system corresponding to 
F, and thus (2.17) has critical points linked by an heteroclinic orbit 
(separatrix). Thus we can apply Melnikov's method to the system - L  ~. 

2.2.  M e l n i k o v ' s  C r i t e r i o n  

We have an unperturbed system with Hamiltonian Lo(r, p,) having an 
heteroclinic orbit 

r = ~(0 - 0o), p, ~---pr(O - -  0 0 )  (2.18) 

at an energy 10. 0o is the initial time at which the particle is at a given 
initial point. We perturb it by eL~(r, Pr, O) + 0(8 2) which is 2~ periodic in 
0. We define the Melnikov function 

f 
oO 

M(Oo) = dO{L o, L I } ( O -  0o) (2.19) 

where { , } is a Poisson bracket evaluated on the unperturbed heteroclinic 
orbit (2.18). M is a measure in first order in e of the distance between the 
stable and unstable manifolds. (~5-17) Melnikov's theorem states that if 
M(Oo) has simple zeros, then the perturbed system has transversally inter- 
secting stable and unstable manifolds, i.e., wildly oscillating separatrices. 

2.3.  T r a n s l a t i o n  in T e r m s  o f  H o, HI 

First we express {Lo, L1} in terms of F, G, Hi: 

L 1, 0F •f2 1 c~H1 ~?G 1 (2.20) 
{ L ~  (2 ~Pr ~F 

Remark that in the special case when G does not depend on r, this 
expression reduces to 1/(22{F, HI}. We have to evaluate (2.20) at the 
unperturbed separatrix: r(t) and pr(l) are given from Eq. (2.7), Po is con- 
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stant, and determined by the following consideration. Since the problem 
comes from a stochastic model, the total unperturbed energy is zero: 
H0 = F +  G =0;  and since F has the heteroclinic orbit at F =  0, we get the 
condition 

G -  1 22 _ ~2 - ~ Q o  (poJ +P0/~oo = 0  (2.21) 

We can choose one of the two roots of (2.21). We take, e.g., Po = 0 which 
gives simpler formulas, since 

dG- I  
- -  (r, Po = 0) = 0 (2.22) 

dr 

(2(r, Po = O) = K~(r )  (2.23) 

After changing variables 0 ~ t, dO = s the Melnikov function becomes 

M ( t o ) _ f  ~ 1 {F, HI} 1 dgd 01 (2.24) 

where the bracket is evaluated at r = f ( t  - to), Pr = f i r ( t  - to) of Eq. (2.18), 
and 

f; Po = O, O ( t -  to) = aq'/~00(r(?)) + 0o (2.25t 
0 

2.4. M e l n i k o v  Cr i ter ion  for  N o n d i f f e r e n t i a b l e  Potent ia l  

If the Melnikov function (2.24) has simple zeros, it implies that the 
potential 99 of the perturbed system will be nondifferentiable. 

We remark that since the Melnikov function is constructed as the dis- 
tance between the stable and unstable manifolds in first order in e, ~ls 171 it 
is easy to see that for Hamiltonian perturbations M always has zeros. The 
question is if the zeros are simple or degenerate, or if M is identically zero. 
It is clear from Eq. (2.24) that the generic case will be with simple zeros, 
since the condition for degeneracy is very restrictive. Assuming that a par- 
ticular perturbation should satisfy it, it can be broken by the slightest 
modification of the perturbation. We can conclude therefore that the 
generic case of the considered models will have nondifferentiable weak- 
noise potentials. 
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3. EXAMPLE 

As an example we treat a model of the type that was discussed in 
Refs. 8-10 using numerical and other approximation methods. We consider 
a Fokker-Planck equation with drift 

K' [r - -  r 3 q-- ef(r) cos 0) 
"=~, co / (3.1) 

and diffusion tensor 

f(r) is some given function characterising the perturbation. The unpertur- 
bed model has a limit cycle with radial symmetry. It has been widely used, 
e.g., in the treatment of the unstable mode in a laser. (22"1'2~ The unperturbed 
potential is given by 

q)o = !  ( - r2 - t -~  r 4 ) (3.3) 

The associated Hamiltonian is H =  H0 + ~;H1 with 

a 2 b 2 
Ho = F(F, Pr) 4- G(po) =5 (Pr) "k- pr[r - -  r 3 ] -t-- -~ (Po) + Poco 

(3.4) 

H1 = prf(r) cos 0 

F ( r ,  P r )  has two stationary points at zero energy (r>~O), (1, 0) and (0, 0), 
linked by the separatrices shown in Fig. 1. The separatrices at Pr =- 0 are 

< 

Fig. 1. Separatrices of F = ( 1 / 2 ) ( p r ) 2 + p r ( r - r 3 ) .  
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always present (and stable) owing to the special form of the Hamiltonian. 
We will analyze the behavior of the separatrix joining the points (1, 0) and 
(0, 0) with pr ~ 0. 

The time evolution on the unperturbed separatrix is given by 
Eqs. (3.5), (3.7), (3.8) below: From the condition F(r, p r ) = 0 ,  Pr ~ 0 we 
get 

2 
Pr = -  ( r3 -- r) (3.5) 

a 

which together with the equation of motion 

OF 
f = ~ p r = a P r  + ( r - -  r 3) 

leads to 

(3.6) 

1(,) 
t - t o = ~ l n  7 - 1  +70 (3.7) 

where 7o is a constant, independent of to. For 0, Po we set according to 
Eq. (2.24) and/~0 = co 

po=O, O=cot (3.8) 

The Poisson bracket 

E {F,H~}=p~cosO (1-3r2) f - (apr+r-r3)~ 

= 2- (r3 -- r) c~ cot I 3r2) f + (r-  r3) ~rJ~ (3.9) 

can be expressed using (3.7) as a function only of r. By changing variables 
t ~ r in the integral that defines the Melnikov function one gets 

=--f~ = l  ~~ 1--~{F, H1}(r, to) M(to) col -o~ dr{F, H1}(t- to) co Jl r 3 -  r 

2 ~] { [ + ~ l n (  1 )1}  =--am dr cos co t o+To 7 - 1  

x [(1-3r2)f+(r-r3)~--~f] (3.10) 
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The dependence on to can be readily analyzed by writing 

M(to) = A cos cot o + B sin cot o 

where A, B are constants given by 

583 

(3.11) 

1 A=--~f]drcos[c~ 1 

x I(1-3r2)f+(r-r3)~rf ] (3.12a) 

B = - - -  drsin m 7o+~ln  ~ - 1  aco 

x [(1-3r2)f+(r-r3)~rf ~ (3.12b) 

M(to) will have zeros at the points that satisfy 

A 
tan COto- (3.13) 

B 

The condition for degeneracy (d/dto)M= 0 gives 

B 
tan OJto--~ (3.14) 

(3.13) and (3.14) imply A = 0 = B .  Thus M(to) has an infinite number of 
zeros, that are simple unless the coefficients A and B vanish identically. 

By making another coordinate transformation 

t ' = 7 o + ~ l n  ( ~ -  1 ) (3.15) 

one can express A and B as Fourier transforms of a function g(t') 

A = dt' cos cot'g(t') 
- -  o O  

(3.16) 

B = - dt' sin oJt'g(t') 
- -  o o  

g(t')=(r3--r)I(1--3r2) f +(r--r3)-~rf ] (3.17) 
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Thus A and B are zero if and only if g(t') = O, i .e . ,  

(1 -- 3r2) f +  (r--  r3) 00~fr = 0 (3.18) 

The only solutions of this equation for r e [0, 1 ] are 

const 
f ( r )  - I r -  r31 (3.19) 

which have singularities at r = 0 and r = 1. Thus, if we consider only pertur- 
bations without singularities we can conclude that any perturbation of the 
considered form (3.1) will lead to a nondifferentiable potential ~0. If instead 
of r - r  3 one takes a more general K~, the preceding calculation can be 
essentially repeated, and the conclusion is also valid in this case. 

4. C O N C L U D I N G  R E M A R K S  

It is clear that the foregoing procedure can also be applied to 
problems with two variables having some other symmetry (i.e., not 
necessarily radial). The method can be easily extended to treat models with 
n variables, under the assumption that in the unperturbed problem one 
degree of freedom has heteroclinic orbits and the other n -  1 admit action- 
angle variables. One can use a vectorial analog of the Melnikov function, 
which was introduced by Holmes and Marsden. (~9) The more general case 
in which several of the unperturbed degrees of freedom have heteroclinic 
orbits would require a further generalization. There is however little doubt 
that the generic case always has transversely intersecting stable and 
unstable manifolds and thus a nondifferentiable associated potential ~0. 

In this context the two following questions appear to be relevant: how 
to determine ~0 explicitly, and how to use and interpret physically the non- 
differentiable potentials. There are several proposals of numerical methods 
to calculate q). In one approach ~1~ based on Eq. (1.7), one calculates the 
different q3 i as solutions of the Hamilton-Jacobi equation and one takes the 
minimum at each point. Another approach is based on the fact that the 
potential ~0 can be identified with the so-called "viscosity solution" of the 
HamiltonGacobi equation. (23) Finite element algorithms have been 
developed (24~ with good convergence to the viscosity solution. The precise 
role of nondifferentiable potentials in nonequilibrium statistical mechanics 
is yet to be established. ~0 gives often a good approximation for the 
probability density. But when it is not smooth, it is not a Liapounov 
function and its possible use as generalized thermodynamic potential must 
still be investigated. 
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